skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ghebreyessus, Kesete"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A visible-light-responsive arylazopyrazole-functionalized phenylalanine (4-MeS-AAP-NF) derived ligand was designed and synthesized, and it was found to form metallogels with reversible photo-responsive properties in mixed methanol/water (MeOH/H2O) solvents. The gelation behavior of the 4-MeS-AAP-NF ligand in the presence of different divalent metal ions in mixed methanol/water (MeOH/H2O) solvents at pH~11.60 was studied. It was found that the 4-MeS-AAP-NF ligand alone could not self-assemble to form any gels. However, in the presence of divalent metal ions, it readily formed the assembled metallogels in an alkaline aqueous/methanol solution with various morphologies. The results suggest that the gelation process was triggered by divalent metal ions. The presence of the AAP moiety in the gel matrix rendered the metallogel assemblies photo-responsive, and the reversible gel-to-sol phase transition was studied by UV-vis spectroscopy. The gels showed a slow, reversible visible-light-induced gel-to-sol phase transition under blue (λ = 405 nm) and then sol-to-gel transition by green light (λ = 530 nm) irradiation, resulting in the re-formation of the original gel state. The morphology and viscoelastic properties of the yellow–orange opaque metallogels were characterized by scanning electron microscopy (SEM) and rheological measurement, respectively. 
    more » « less
  2. A refractive index of dielectrics was modified by several methods and was known to have direct influence on optical forces in nanophotonic structures. The present contribution shows that isomerization of photoswitching molecules can be used to regulate refractive index of dielectrics in-situ. In particular, spectroscopic study of a polydimethylsiloxane–arylazopyrazole (PDMS–AAP) composite revealed that refractive index of the composite shifts from 2.0 to 1.65 in trans and cis states, respectively, of the embedded AAP. Based on this, a proposition is made for a waveguide structure, in which external UV/Vis source reversibly regulates the conformation of the PDMS–AAP core. Computational study is performed using Maxwell’s equations on buried waveguide structure. The simulation, implemented in PYTHON, sequentially utilizes empirical refractive indices of the composite in the isomeric states in lieu of regulation by a source. The simulation revealed highly confined wave propagations for injected signals of 340 and 450 nm wavelengths. It is observed that the cis state suppresses higher order mode when propagating UV wavelength but allows it for visible light. This modal tuning demonstrated that single mode can be selectively excited with appropriate waveguide dimensions. Further impact of the tuning is seen in the optical force between waveguide pair where the forces shift between attractive and repulsive in relation to the isomeric state of the PDMS–AAP core. These effects which stem from the adjustment of refractive index by photoisomerization suggests that in-situ regulation of index is achievable by successful integration of photoswitching molecules in host materials, and the current PDMS–AAP composites investigated in this study can potentially enhance nanophotonic and opto-mechanical platforms. 
    more » « less
  3. Enzyme-instructed self-assembly (EISA) and hydrogelation is a versatile approach for generating soft materials. Most of the substrates for alkaline phosphatase catalysed EISA utilize phosphotyrosine ( p Tyr) as the enzymatic trigger for EISA and hydrogelation. Here we show the first example of phosphonaphthyl ( p NP) and phosphobiphenyl ( p BP) motifs acting as faster enzymatic triggers than phosphotyrosine for EISA and hydrogelation. This work illustrates novel enzyme triggers for rapid enzymatic self-assembly and hydrogelation. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Stimuli-responsive supramolecular gels and metallogels have been widely explored in the past decade, but the fabrication of metallogels with reversible photoresponsive properties remains largely unexplored. In this study, we report the construction of photoresponsive hybrid zinc-based metallohydrogel systems coassembled from an imidazole functionalized phenylalanine derivative gelator (ImF) and carboxylic acid functionalized arylazopyrazole (AzoPz) molecular photoswitches in the presence of Zn 2+ ions. Unlike traditional covalent conjugation, noncovalent introduction of small molecular switches into the gel matrix provides a convenient route to generate photoresponsive functional materials with tunable properties and expands the scope of optically controlled molecular self-assemblies. It has been found that the carboxylic acid functionalized AzoPz derivatives alone or mixed with the ImF moiety could not self-assemble to form any gels. However, in the presence of Zn 2+ ions they readily formed the coassembled hybrid metallogels in an alkaline aqueous solution with various morphologies. These results suggest that the gelation process was triggered by the Zn 2+ ions. In addition, the ImF gelator shows specific response to Zn 2+ ions only. The presence of the AzoPz moiety in the gel matrix makes the metallogel coassemblies photoresponsive and the reversible gel-to-sol phase transition was studied by UV-vis spectroscopy. The gels showed a slow reversible light-induced gel-to-sol phase transition under UV ( λ = 365 nm) and then sol-to-gel transition by green light ( λ = 530) irradiation resulting in the reformation of the original gel state. The morphology and viscoelastic properties of the fibrillar opaque metallogels have been characterized by transmission electron microscopy (TEM) and rheological measurement, respectively. 
    more » « less
  6. Digonnet, Michel J.; Jiang, Shibin (Ed.)